References
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. A. (2020). Pre-k–12 guidelines for assessment and instruction in statistics education II (GAISE II). American Statistical Association.
Behrens, J. T., & Yu, C. (2003). Exploratory data analysis. In J. A. Schinka & W. F. Velicer (Eds.), Research methods in psychology (Vol. 2). John Wiley & Sons, Inc.
Bertrand, J. (1840). Traité d’arithmétique. L. Hachette & Co. https://gallica.bnf.fr/ark:/12148/bpt6k77735p
Boole, G. (1847). The mathematical analysis of logic. Macmillan, Barclay, & Macmillan.
Boyer, C. B., & Merzbach, U. C. (1991). A history of mathematics (2nd ed.). John Wiley & Sons, Inc.
Cantor, G. (1891). Ueber eine elementare frage der mannigfaltigkeitslehre. Jahresbericht Der Deutschen Mathematiker-Verreinigung, 1890/91, 75–78. https://www.digizeitschriften.de/dms/img/?PID=GDZPPN002113910
Cauchy, A.-L. (1821). Cours d’analyse de l’école royale polytechnique: Vols. I. Analyse Algébrique. de l’Imprimerie Royale.
Cayley, A. (1854). On the theory of groups, as depending on the symbolic equation \(\theta^n=1\). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7(42), 40–47.
Chance, B. L. (2002). Components of statistical thinking and implications for instruction and assessment. Journal of Statistics Education, 10(3). http://jse.amstat.org/v10n3/chance.html
Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104(9), 801–823. https://doi.org/10.1080/00029890.1997.11990723
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Psychology Press.
Conference Board of the Mathematical Sciences. (2001). The mathematical education of teachers. American Mathematical Society; Mathematical Association of America.
Conference Board of the Mathematical Sciences. (2012). The mathematical education of teachers II. American Mathematical Society; Mathematical Association of America.
Cotes, R. (1722). Harmonia mensurarum. Cambridge.
De Morgan, A. (1847). Formal logic; or, the calculus of inference, necessary and probable. Taylor; Walton.
Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Friedrich Bieweg und Gohn. https://archive.org/details/stetigkeitundir00dedegoog
Edwards, B., & Ward, M. B. (2008). The role of mathematical definitions in mathematics and in undergraduate mathematics courses. In M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education (pp. 223–232). Mathematical Association of America.
Euler, L. (1748). Introductio in analysin infinitorum (Vol. 1). Marcus-Michael Bousquet & Co. https://gallica.bnf.fr/ark:/12148/bpt6k33510/
Ewald, W., & Sieg, W. (2013). Lectures on the infinite. In David hilbert’s lectures on the foundations of arithmetic and logic, 1917-1933. Springer.
Franklin, C., Kader, G. D., Mewborn, D. A., Moreno, J., Peck, R., Perry, M., & Schaeffer, R. L. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A pre-k-12 curriculum framework. American Statistical Association.
Fraser, C. G., Knorr, W. R., Berggren, J. L., Folkerts, M., & Gray, J. J. (2019). Mathematics. In Encyclopædia britannica. Encyclopædia Britannica, inc. https://www.britannica.com/science/mathematics
GAIMME. (2019). GAIMME: Guidelines for assessment and instruction in mathematical modeling education (S. Garfunkel & M. Montgomery, Eds.). Consortium for Mathematics; Its Applications (COMAP); Society for Industrial; Applied Mathematics (SIAM). https://www.siam.org/Publications/Reports/Detail/guidelines-for-assessment-and-instruction-in-mathematical-modeling-education
Gel’fond, A. O. (1934). Sur le septiéme probléme de Hilbert. Belletin de l’Académie Des Sciences de l’URSS. Classe Des Sciences Mathématiques Et Na, 4, 623–634.
Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. Taylor & Francis. https://books.google.com/books?id=cVZgDwAAQBAJ
He, J., Chaparro, A., Nguyen, B., Burge, R. J., Crandall, J., Chaparro, B., Ni, R., & Cao, S. (2014). Texting while driving: Is speech-based text entry less risky than handheld text entry? Accident Analysis & Prevention, 72, 287–295. https://doi.org/https://doi.org/10.1016/j.aap.2014.07.014
Heath, T. L. (1908a). The thirteen books of Euclid’s elements: Translated from the text of Heiberg with introduction and commentary: Vols. 1, Introduction and Books I and II. University Press.
Heath, T. L. (1908b). The thirteen books of Euclid’s elements: Translated from the text of Heiberg with introduction and commentary: Vols. 2, Books III-IX. University Press.
Heine, E. (1872). Die elemente der funtionenlehre. Journal Für Die Reine Und Angewandte Mathematik (Crelle’s Journal), 74, 172–188.
Hilbert, D. (1910). The foundations of geometry (Second). The Open Court Publishing Company.
Klein, D. (2003). A brief history of American K-12 mathematics education in the 20th century. In J. M. Royer (Ed.), Mathematical cognition (pp. 175–225). Information Age Pub.
Klein, F. (1872). Vergleichende betrachtungen ber neuere geometrische forschungen. Andreas Deichart.
Lee, H., & Tran, D. (2015). Framework for supporting students’ approaches to statistical investigations. Friday Institute for Educational Innovation, NC State University. https://hirise.fi.ncsu.edu/resources-2/tsdi_resources/supporting-students-statistical-investigations/
Leurechon, J. (1629). SelectæPropositiones in tota sparsim mathematica pulcherrimæ. Mussiponti. https://books.google.com/books?id=RGwTAAAAQAAJ
Macdonald, R. R. (1997). On statistical testing in psychology. British Journal of Psychology, 88(2). https://doi.org/10.1111/j.2044-8295.1997.tb02638.x
National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform. Department of Education.
NCTM. (1980). An agenda for action: Recommendations for school mathematics of the 1980s. National Council of Teachers of Mathematics.
NCTM. (1989). Curriculum and evaluation standards for school mathematics. National Council of Teachers of Mathematics.
NCTM. (1991). Professional teaching standards. National Council of Teachers of Mathematics.
NCTM. (1995). Assessment standards. National Council of Teachers of Mathematics.
NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
NCTM. (2020). Standards for the preparation of secondary mathematics teachers. National Council of Teachers of Mathematics.
Neumann, J. von. (1923). Zur einführung der transfiniten zahlen. Acta Litterarum Ac Scientiarum RegiæUniversitatis HungaricæFrancisco-Josephinae, Sectio Scientiarum Mathematicarum, 1, 199–208.
NGA-CCSSO. (2010). Common core state standards mathematics. National Governors Association Center for Best Practices, Council of Chief State School Officers.
Perezgonzalez, J. D. (2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. Frontiers in Psychology, 6(223). https://doi.org/10.3389/fpsyg.2015.00223
Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). Doubleday & Company, Inc.
Ponte, J. P. (1992). The history of the concept of function and some educational implications. The Mathematics Educator, 3(2), 3–8.
Raimi, R. A., & Braden, L. S. (1998). State mathematics standards: An appraisal of math standards in 46 States, the District of Columbia, and Japan. Thomas B. Fordham Foundation.
Reys, B., & Lappan, G. (2007). Consensus or confusion? The intended math curriculum in State-level standards. Phi Delta Kappan, 88(9), 676–680.
Rudin, W. (1976). Principles of mathematical analysis (3rd ed.). McGraw-Hill, Inc.
Sammons, L. (2018). Teaching students to communicate mathematically. ASCD.
Schneider, T. (1935). Transzendenzuntersuchungen periodischer funktionen I. Transzendenz von potenzen. Journal Für Die Reine Und Angewandte Mathematik (Crelle’s Journal), 172, 65–69.
School Mathematics Study Group. (1960). Mathematics for high school: geometry. Yale University.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Thurston, H. A. (1956). The number-system. Blackie & Son, Limited.
UNESCO/UNODC. (2019). Empowering students for just societies: A handbook for secondary school teachers. UNESCO/UNODC.
Usiskin, Z., & Griffin, J. (2008). The classification of quadrilaterals: A study in definition. Information Age Publishing Inc.
Usiskin, Z., Peressini, A., Marchisotto, E. A., & Stanley, D. (2003). Mathematics for high school teachers: An advanced perspective. Pearson Education, Inc.
Van Dormolen, J., & Zaslavsky, O. (2003). The many facets of a definition: The case of periodicity. Journal of Mathematical Behavior, 22, 91–196.
Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65–80). Kluwer Academic Press.
Whitehead, A. N., & Russell, B. (1910). Principia mathematica (Vol. 1). Cambridge University Press.
Whitehead, A. N., & Russell, B. (1912). Principia mathematica (Vol. 2). Cambridge University Press.
Whitehead, A. N., & Russell, B. (1913). Principia mathematica (Vol. 3). Cambridge University Press.